1. A silicon sample at room temperature has an intrinsic carrier concentration of $n_i = 5 \times 10^9 \text{ cm}^{-3}$. It is doped with $N_D = 6.1 \times 10^{16}$ arsenic atoms/cm³ and $N_A = 6 \times 10^{12}$ boron atoms/cm³. The electron mobility is measured as $\mu_n = 1600 \text{ cm}^2/\text{V} \cdot \text{s}$ and the hole mobility is $\mu_p = 480 \text{ cm}^2/\text{V} \cdot \text{s}$.?

Is this material p or n-type? b

What is the hole concentration? ____a
(a)
$$p = 4.1 \times 10^2 / \text{cm}^3$$
 (b) $p = 6 \times 10^{12} / \text{cm}^3$ (c) $p = 6.1 \times 10^{16} / \text{cm}^3$
(d) $p = 2.5 \times 10^{19} / \text{cm}^3$

If an external electrical field of E = 90 V/cm is applied across this silicon sample, what is the electron current density in this material? ____b____

(a)
$$jn = 2.8 \times 10^{-12} \text{ A/cm}^2$$
 (b) $jn = 1404 \text{ A/cm}^2$ (c) $jn = 15.6 \text{ A/cm}^2$
(d) $jn = 3.2 \times 10^{-14} \text{ A/cm}^2$

a)
$$\underset{I_D}{\stackrel{-}{\longrightarrow}}$$
 b) $\underset{I_D}{\stackrel{-}{\longrightarrow}}$ c) $\underset{I_D}{\stackrel{+}{\longrightarrow}}$ d) $\underset{I_D}{\stackrel{+}{\longrightarrow}}$ e) None of these

Which figure above shows the correct sign convention for both positive diode voltage and positive diode current? _____b____

3. A diode has $I_s = 10^{-10}$ A and the nonideality factor, n = 2. What is the diode voltage if the diode current is 40A? $V_T = 0.025$ V for room temperature. _____C___

(a)
$$V_D = 3.2V$$
 (b) $V_D = -5.1V$ (c) $V_D = 1.34V$ (d) $V_D = 0V$

4. Find the current in each diode in the circuit shown below using the constant voltage drop model with $V_{on} = 0.70 \text{ V}$. _____d____

(a) $I_{D1} = 0A$, $I_{D2} = 0A$ (b) $I_{D1} = 0.199mA$, $I_{D2} = 0A$ (c) $I_{D1} = 0A$, $I_{D2} = 0.3mA$ (d) $I_{D1} = 0A$, $I_{D2} = 0.199mA$

5. In the circuit below, the Zener diode has a breakdown voltage $V_{Z0} = |V_{BR}| = 8.0$ V and a measurement has shown that $V_Z = 8.6$ V when $I_Z = 30$ mA. What is the value of V_{out} when R_L becomes infinitely large? _____

$$12 V \xrightarrow{+} I_{Z} \xrightarrow{} R_{L} + V_{out}$$

(a) $V_{out} = 0 V$ (b) $V_{out} = 8.2 V$ (c) $V_{out} = 8.8 V$ (d) $V_{out} = 8.4 V$

6. The Zener diode in the circuit has an equivalent resistance $R_Z = 10 \Omega$. From the diode data sheet we find that if the voltage across the Zener diode is 6.4 V at $I_Z = 20$ mA. Determine the output voltage V_{out} _____c

 $22 \ k\Omega$

 D_2

50k Ω

7. Which one of the curves shown below represents the transfer characteristics (v_{in} - v_{out}) for the Clipper Circuit? (Assume constant voltage drop model with $V_{on} = 0.7V$)

8. For the circuit shown below, if a sinusoidal wave is applied to the input, which one of the curves is the output voltage? (Assume $V_{on}=0.7V$)

9. You are asked to design an automotive battery charger using a 60 Hertz sinusoidal voltage source described by, $V_S = V_P \cos(\omega t) = V_P \cos(2\pi 60t)$. In order to prevent the battery from overheating, the charging cycle must be kept to 1/3 of a cycle (i.e. charging only occurs for 1/3 of the 60 Hertz cycle). Using the ideal diode model, determine the proper value of V_P to achieve the design goal. ____b____

